The matrix cover polynomial
نویسندگان
چکیده
The cover polynomial C(D) = C(D;x, y) of a digraph D is a twovariable polynomial whose coefficients are determined by the number of vertex coverings of D by directed paths and cycles. Just as for the Tutte polynomial for undirected graphs (cf. [11, 16]), various properties of D can be read off from the values of C(D;x, y). For example, for an n-vertex digraph D, C(D; 1, 0) is the number of Hamiltonian paths in D, C(D; 0, 1) is the permanent of adjacency matrix of D, and C(D; 0,−1) is (−1)n times the determinant of the adjacency matrix of D. In this paper, we extend these ideas to a much more general setting, namely, to matrices with elements taken from an arbitrary commutative ring with identity. In particular, we establish a reciprocity theorem for this generalization, as well as establishing a symmetric function version of the new polynomial, similar in spirit to Stanley’s symmetric function generalization [13] of the chromatic polynomial of a graph, and Tim Chow’s symmetric function generalization [5] of the usual cover polynomial. We also show that all of the generalized polynomials and symmetric functions can also be obtained by a deletion/contraction process.
منابع مشابه
An improved and efficient stenographic scheme based on matrix embedding using BCH syndrome coding.
This paper presents a new stenographic scheme based on matrix embedding using BCH syndrome coding. The proposed method embeds massage into cover by changing some coefficients of cover. In this paper defining a number :::as char:::acteristic of the syndrome, which is invariant with respect to the cyclic shift, we propose a new embedding algorithm base on BCH syndrome coding, without finding ro...
متن کاملON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS
Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...
متن کاملDetermination of a Matrix Function in the Form of f(A)=g(q(A)) Where g(x) Is a Transcendental Function and q(x) Is a Polynomial Function of Large Degree Using the Minimal Polynomial
Matrix functions are used in many areas of linear algebra and arise in numerical applications in science and engineering. In this paper, we introduce an effective approach for determining matrix function f(A)=g(q(A)) of a square matrix A, where q is a polynomial function from a degree of m and also function g can be a transcendental function. Computing a matrix function f(A) will be time- consu...
متن کاملAlgebraic adjoint of the polynomials-polynomial matrix multiplication
This paper deals with a result concerning the algebraic dual of the linear mapping defined by the multiplication of polynomial vectors by a given polynomial matrix over a commutative field
متن کاملNew Bases for Polynomial-Based Spaces
Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...
متن کامل